Supporting Information

Rec. Nat. Prod. 8:1 (2014) 46-50

Cytotoxic Sesquiterpenoids and Diarylheptanoids from the Rhizomes of Curcuma elata Roxb.

Ratchanaporn Chokchaisiri ${ }^{1,2}$, Prapapan Pimkaew ${ }^{3}$, PawineePiyachaturawat ${ }^{3,4}$, Rattana Chalermglin ${ }^{5}$ and Apichart Suksamrarn ${ }^{1 *}$${ }^{1}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science,Ramkhamhaeng University, Bangkok 10240, Thailand${ }^{2}$ Department of Chemistry, School of Science, University of Phayao, Maeka, Muang, Phayao 56000,Thailand${ }^{3}$ Toxicology Graduate Program, and ${ }^{4}$ Department of Physiology, Faculty of Science, MahidolUniversity, Bangkok 10400, Thailand
${ }^{5}$ Department of Chemistry, Faculty of Science and Technology, Rajabhat Chandrakasem University, Bangkok 10900, Thailand
Table of Contents PageExtraction and Isolation of the Air-dried Rhizomes of Curcuma elata 2
Preparation of Mosher Esters of Compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ 4
S1: ${ }^{1} \mathrm{H}$ NMR spectrum of germacrone (1) in CDCl_{3} 5
S2: ${ }^{13} \mathrm{C}$ NMR spectrum of germacrone (1) in CDCl_{3} 5
S3: ${ }^{1} \mathrm{H}$ NMR spectrum of curzerenone (2) in CDCl_{3} 6
S4: ${ }^{13} \mathrm{C}$ NMR spectrum of curzerenone (2) in CDCl_{3} 6
S5: ${ }^{1} \mathrm{H}$ NMR spectrum of isofuranodienone (3) in CDCl_{3}. 7
S6: ${ }^{13} \mathrm{C}$ NMR spectrum of isofuranodienone (3) in CDCl_{3} 7
S7: ${ }^{1} \mathrm{H}$ NMR spectrum of furanodienone (4) in CDCl_{3} 8
S8: ${ }^{13} \mathrm{C}$ NMR spectrum of furanodienone (4) in CDCl_{3} 8
S9: ${ }^{1} \mathrm{H}$ NMR spectrum of curdione (5) in CDCl_{3} 9
S10: ${ }^{13} \mathrm{C}$ NMR spectrum of curdione (5) in CDCl_{3} 9

[^0]Table of Contents Page
S11: ${ }^{1} \mathrm{H}$ NMR spectrum of neocurdione (6) in CDCl_{3} 10
S12: ${ }^{13} \mathrm{C}$ NMR spectrum of neocurdione (6) in CDCl_{3} 10
S13: ${ }^{1} \mathrm{H}$ NMR spectrum of zederone (7) in CDCl_{3} 11
S14: ${ }^{13} \mathrm{C}$ NMR spectrum of zederone (7) in CDCl_{3} 11
S15: ${ }^{1} \mathrm{H}$ NMR spectrum of curcumenone (8) in CDCl_{3} 12
S16: ${ }^{13} \mathrm{C}$ NMR spectrum of curcumenone ($\mathbf{8}$) in CDCl_{3} 12
S17: ${ }^{1} \mathrm{H}$ NMR spectrum of 13-hydroxygermacrone ($\mathbf{(9)}$ in CDCl_{3} 13
S18: ${ }^{13} \mathrm{C}$ NMR spectrum of 13-hydroxygermacrone (9) in CDCl_{3} 13
S19: ${ }^{1} \mathrm{H}$ NMR spectrum of zedoarondiol (10) in CDCl_{3} 14
S20: ${ }^{13} \mathrm{C}$ NMR spectrum of zedoarondiol (10) in CDCl_{3} 14
S21: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl_{3}, 15
S22: ${ }^{13}$ C NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl_{3} 15
S23: ${ }^{1}$ H NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl_{3} 16
S24: ${ }^{13} \mathrm{C}$ NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl_{3} 16
S25: ${ }^{1} \mathrm{H}$ NMR spectrum of centrolobol (13) in CDCl_{3} 17
S26: ${ }^{13} \mathrm{C}$ NMR spectrum of centrolobol (13) in CDCl_{3} 17
S27: ${ }^{1} \mathrm{H}$ NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6- hepten-3-ol (14) in CDCl_{3} 18
S28: ${ }^{13} \mathrm{C}$ NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6- hepten-3-ol (14) in CDCl_{3} 18
S29. $\Delta \delta=\left(\Delta \delta_{S}-\Delta \delta_{R}\right)$ values in ppm obtained from the MTPA esters of $\mathbf{1 1}$ in CDCl_{3} 19
S30. $\Delta \delta=\left(\Delta \delta_{S}-\Delta \delta_{R}\right)$ values in ppm obtained from the MTPA esters of $\mathbf{1 2}$ in CDCl_{3} 19

Extraction and Isolation of the Air-dried Rhizomes of Curcuma elata

The air-dried rhizomes of C. elata (8.5 kg) were milled and macerated successively with n-hexane and EtOH . The hexane and EtOH solutions were filtered and concentrated to dryness under reduced pressure at temperature $40-45^{\circ} \mathrm{C}$ to give the hexane extract (brownish syrup, 129.7 g) and the EtOH extract (dark brownish sticky solid, 281.5 g).

Hexane Extract

The hexane extract (129.0 g) was fractionated by column chromatography (CC) (Merck silica gel $60,0.063-0.200 \mathrm{~mm}, 250 \mathrm{~g}$) eluting with n-hexane, n-hexane-EtOAc, and EtOAc with increasing amount of the more polar solvent. The eluates were examined by TLC and 8 groups of eluting fractions were obtained.

Group 3 (Fractions 5-17): These combined fractions were chromatographed over silica gel and eluted under isocratic condition ($1 \% \mathrm{EtOAc}$ in n-hexane) to afford germacrone ($\mathbf{1}$) as colorless prisms (575.9 mg), m.p. $49-50^{\circ} \mathrm{C}$ (from MeOH) and curzerenone (2) as a colorless oil (475.6 mg).

Group 4 (Fractions 18-40): These combined fractions were chromatographed over silica gel and eluted under isocratic condition ($2 \% \mathrm{EtOAc}$ in n-hexane) to afford 3 subfractions. Subfraction 1 (fractions 1-31) was separated on a Sephadex LH-20 eluting with MeOH and further purified by silica column chromatography eluting with 0.6% EtOAc in n-hexane to yield isofuranodienone (3) as a colorless oil (3.2 mg). Subfraction 3 (fractions 40-51) was subjected to repeated column chromatography eluting under isocratic condition (1% EtOAc in n-hexane) to give furanodienone (4) as a colorless oil (44.3 mg).

Group 5 (Fractions 41-57): These combined fractions were chromatographed over silica gel using 2% EtOAc in n-hexane as eluent, followed by column chromatography eluting under isocratic condition ($1 \% \mathrm{EtOAc}$ in n-hexane) to give curdione (5) as colorless prisms (129.9 mg), m.p. $55-56^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) and neocurdione (6) as a colorless prisms (385.8 mg), m.p. $41-42^{\circ} \mathrm{C}$ (from EtOAc- n-hexane).

Group 7 (Fraction 60): This fraction was repeatedly recrystallized with EtOAc in n hexane to afford zederone (7) as colorless needles (11.85 g), m.p. $153-154{ }^{\circ} \mathrm{C}$ (from EtOAc-nhexane).

Group 8 (Fractions 61-62): These combined fractions were chromatographed over silica gel and eluted under isocratic condition ($5 \% \mathrm{EtOAc}$ in n-hexane) to afford 6 subfractions. Subfraction 3 (fractions 5-6) was rechromatographed over silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give curcumenone (8) as colorless oil (144.3 mg). Subfraction 5 (fractions 11-13) was subjected to two repeated column chromatography eluting under isocratic condition ($15 \% \mathrm{EtOAc}$ in n-hexane) to yield 13-hydroxygermacrone (9) as colorless oil (45.8 mg).

EtOH Extract

The EtOH extract (270.0 g) was fractionated by column chromatography (Merck silica gel $60,0.063-0.200 \mathrm{~mm}, 520 \mathrm{~g}$), using a gradient solvent system of n-hexane, n-hexane-EtOAc, $\mathrm{EtOAc}, \mathrm{EtOAc}-\mathrm{MeOH}$ and MeOH with increasing amounts of the more polar solvent. The eluates were examined by TLC and 3 combined fractions were obtained.

Group 2 (Fractions 40-58): These combined fractions were chromatographed over silica gel and eluted under isocratic condition $\left(0.5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 4 subfractions. Subfraction 2 (fractions 13-17) was separated on Sephadex LH-20 eluting with MeOH and further purified by column chromatography over silica gel RP-18 with $30 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ as eluting solvent to give 3-hydroxy-5-platyphyllone (11) as colorless viscous oil (2.7 mg), ($3 S$)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) as amorphous powder (20.2 mg), m.p. 112-113 ${ }^{\circ}$ (EtOAc-n-hexane) and centrolobol (13) as amorphous solid (7.5 mg). Subfraction 3 (fractions 18-23) was separated on Sephadex LH-20 eluting with MeOH , followed by column chromatography over silica gel RP-18 with $30 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ to yield (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-($6 E$)-6-hepten-3-ol (14) as amorphous solid (2.1 mg).

Group 3 (Fractions 59-60): These combined fractions were chromatographed on a Sephadex LH-20 and eluted with MeOH and further purified by chromatography over silica gel

RP-18 with $30 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ to give zedoarondiol (10) as colorless needles (7.5 mg), m.p. 123 ${ }^{\circ} \mathrm{C}$ (from EtOAc- n-hexane).

Preparation of the MTPA Ester of Compounds 11 and 12.

To a solution of the compound $\mathbf{1 1}(2.1 \mathrm{mg})$ in dry pyridine ($100 \mu \mathrm{~L}$) was added (R) -$(-)$-MTPA chloride $(15 \mu \mathrm{~L})$ at $10^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . Stirring continued at ambient temperature and the completion of reaction was monitored by TLC. Two milliliters of n-hexane was added to the reaction mixture and the hexane-soluble part was subjected to flash column chromatography using n-hexane and $15 \% \mathrm{EtOAc} / n$-hexane as eluting solvent to give the (S)-MTPA ester $\mathbf{1 1 x}(3.2 \mathrm{mg})$. The procedure was repeated, but using (S)-(+)-MTPA chloride in place of $(R)-(-)$-MTPA chloride, to yield the (R)-MTPA ester $\mathbf{1 1 y}(3.5 \mathrm{mg})$. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 1 x}$ and $\mathbf{1 1} \mathbf{y}$ were recorded in CDCl_{3}; the chemical shift differences of the proton resonances between the (S)-MTPA ester 11x and the (R)-MTPA ester 11y were calculated and the results are summarized in S29. Following the above procedure, the absolute configurations of esters $\mathbf{1 2 x}$ and $\mathbf{1 2 y}$ were determined, and the results are summarized in $\mathbf{S 3 0}$.

S1. ${ }^{1} \mathrm{H}$-NMR spectrum of germacrone (1) in CDCl_{3}
Germacrone (1): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 4.95(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-1), 2.05(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2 \alpha), 2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \beta), 2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \beta), 4.68(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ $9.0 \mathrm{~Hz}, \mathrm{H}-5), 2.82(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H}-6 \alpha), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H}-6 \beta), 2.92$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 3.38(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-9 \beta), 1.77(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 1.69(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-13), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$.

S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of germacrone (1) in CDCl_{3}
Germacrone (1): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 134.8(\mathrm{C}-1), 24.0(\mathrm{C}-2), 38.0(\mathrm{C}-3), 134.8$ (C-4), 125.3 (C-5), 29.1 (C-6), 129.3 (C-7), 207.6 (C-8), 55.8 (C-9), 126.6 (C-10), 137.2 (C11), 19.8 (C-12), 22.2 (C-13), 15.5 (C-14), 16.6 (C-15).

S3. ${ }^{1} \mathrm{H}$-NMR spectrum of curzerenone (2) in CDCl_{3}
Curzerenone (2): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 5.78(1 \mathrm{H}, \mathrm{dd}, J=17.4,13.0 \mathrm{~Hz}, \mathrm{H}-1), 4.98$ ($2 \mathrm{H}, \mathrm{dd}, J=17.4,4.3 \mathrm{~Hz}, \mathrm{H}-2$), $4.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3 \alpha), 4.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3 \beta), 2.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 5), $2.76(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 2.88(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}, \mathrm{H}-9 \beta), 7.06(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-12)$, 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 1.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 1.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$).

S4. ${ }^{13} \mathrm{C}$-NMR spectrum of curzerenone (2) in CDCl_{3}
Curzerenone (2): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 145.5$ (C-1), 112.9 (C-2), 115.5 (C-3), 141.0 (C-4), 64.5 (C-5), 194.7 (C-6), 119.2 (C-7), 165.4 (C-8), 33.6 (C-9), 42.8 (C-10), 120.1 (C-11), 139.5 (C-12), 8.9 (C-13), 24.7 (C-14), 24.7 (C-15).

S5. ${ }^{1} \mathrm{H}$-NMR spectrum of isofuranodienone (3) in CDCl_{3}
Isofuranodienone (3): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.6 \mathrm{~Hz}, \mathrm{H}-1), 1.78$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \alpha$), $2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \beta), 2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \beta), 5.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-5), 3.03(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 3.57(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}, \mathrm{H}-9 \beta), 7.05(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-12)$, 2.16 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-13$), 1.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 1.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$).

S6. ${ }^{13} \mathrm{C}$-NMR spectrum of isofuranodienone (3) in CDCl_{3}
Isofuranodienone (3): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$, $\delta: 123.9(\mathrm{C}-1), 26.1(\mathrm{C}-2), 36.3(\mathrm{C}-3)$, 141.1 (C-4), 129.0 (C-5), 193.8 (C-6), 123.9 (C-7), 161.5 (C-8), 32.8 (C-9), 134.0 (C-10), 122.1 (C-11), 138.4 (C-12), 9.5 (C-13), 22.6 (C-14), 19.1 (C-15).

S7. ${ }^{1} \mathrm{H}$-NMR spectrum of furanodienone (4) in CDCl_{3}
Furanodienone (4): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 5.15(1 \mathrm{H}, \mathrm{dd}, J=11.4,4.1 \mathrm{~Hz}, \mathrm{H}-1)$, $2.16(1 \mathrm{H}, \mathrm{td}, J=12.4,3.5 \mathrm{~Hz}, \mathrm{H}-2 \alpha), 2.30(1 \mathrm{H}, \mathrm{td}, J=12.4,4.1 \mathrm{~Hz}, \mathrm{H}-2 \beta), 1.85(1 \mathrm{H}, \mathrm{td}, J=$ $11.4,4.1 \mathrm{~Hz}, \mathrm{H}-3 \alpha), 2.44(1 \mathrm{H}, \mathrm{ddd}, J=11.4,6.9,3.4 \mathrm{~Hz}, \mathrm{H}-3 \beta)$, 5.78 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5$), 3.66 (1 H , br d, $J=14.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha$), $3.70(1 \mathrm{H}$, br d, $J=14.5 \mathrm{~Hz}, \mathrm{H}-9 \beta), 7.05$ ($3 \mathrm{H}, \mathrm{br}$ s, H-12), 2.11 (3H, s, H-13), 1.97 (3H, s, H-14), 1.28 (3H, s, H-15).

S8. ${ }^{13} \mathrm{C}$-NMR spectrum of furanodienone (4) in CDCl_{3}
Furanodienone (4): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 130.5$ (C-1), 26.4 (C-2), 40.6 (C-3), 145.8 (C-4), 132.4 (C-5), 190.0 (C-6), 123.9 (C-7), 156.5 (C-8), 41.7 (C-9), 135.4 (C-10), 122.0 (C-11), 138.0 (C-12), 9.5 (C-13), 18.9 (C-14), 15.7 (C-15).

S9. ${ }^{1} \mathrm{H}$-NMR spectrum of curdione (5) in CDCl_{3}
Curdione (5): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 5.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 2.08-2.13(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, $1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 2.08-2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \beta), 2.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4), 2.37(1 \mathrm{H}, \mathrm{dd}, J=16.4$, $1.5 \mathrm{~Hz}, \mathrm{H}-6 \alpha), 2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \beta), 2.88(1 \mathrm{H}, \mathrm{ddd}, J=16.4,8.5,7.8 \mathrm{~Hz}, \mathrm{H}-7), 2.91(1 \mathrm{H}, \mathrm{d}, J=$ $10.7 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 3.04(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{H}-9 \beta), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 0.85(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, $\mathrm{H}-12), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}-13), 0.95(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-14), 1.62(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$.

S10. ${ }^{13} \mathrm{C}$-NMR spectrum of curdione (5) in CDCl_{3}
Curdione (5): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 131.5(\mathrm{C}-1), 26.3(\mathrm{C}-2), 34.0(\mathrm{C}-3), 46.7(\mathrm{C}-$ 4), 214.6 (C-5), 44.2 (C-6), 53.5 (C-7), 211.1 (C-8), 55.8 (C-9), 129.2 (C-10), 29.9 (C-11), 21.1 (C-12), 19.8 (C-13), 18.5 (C-14), 16.5 (C-15).

S11. ${ }^{1} \mathrm{H}$-NMR spectrum of neocurdione (6) in CDCl_{3}
Neocurdione (6): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 5.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \alpha)$, $2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \beta), 1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \beta), 2.45(1 \mathrm{H}, \mathrm{br}$ s, H-4), $2.36(1 \mathrm{H}$, dd, $J=14.8,2.4 \mathrm{~Hz}, \mathrm{H}-6 \alpha), 2.66(1 \mathrm{H}, \mathrm{dd}, J=14.8,10.3 \mathrm{~Hz}, \mathrm{H}-6 \beta), 2.83(1 \mathrm{H}, \operatorname{ddd}, J=19.5$, $10.9,8.5 \mathrm{~Hz}, \mathrm{H}-7), 2.82(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 3.00(1 \mathrm{H}, \mathrm{brd}, J=11.4 \mathrm{~Hz}, \mathrm{H}-9 \beta)$, $1.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-12), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-13), 1.00(3 \mathrm{H}$, d, $J=7.1 \mathrm{~Hz}, \mathrm{H}-14), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$.

S12. ${ }^{13} \mathrm{C}$-NMR spectrum of neocurdione (6) in CDCl_{3}
Neocurdione (6): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 131.1$ (C-1), 25.4 (C-2), 32.7 (C-3), 45.7 (C-4), 212.5 (C-5), 42.0 (C-6), 52.5 (C-7), 210.2 (C-8), 55.2 (C-9), 129.1 (C-10), 30.9 (C-11), 21.0 (C-12), 20.3 (C-13), 18.1 (C-14), 18.1 (C-15).

S13. ${ }^{1} \mathrm{H}$-NMR spectrum of zederone (7) in CDCl_{3}
Zederone (7): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 5.46(1 \mathrm{H}, \mathrm{dd}, J=11.8,3.6 \mathrm{~Hz}, \mathrm{H}-1), 2.17(1 \mathrm{H}$, br d, $J=13.2 \mathrm{~Hz}, \mathrm{H}-2 \alpha), 2.48(1 \mathrm{H}, J=$ dddd, $13.6,13.2,11.9,3.2 \mathrm{~Hz}, \mathrm{H}-2 \beta), 1.25(1 \mathrm{H}$, ddd, $J=12.8,10.3,3.8 \mathrm{~Hz}, \mathrm{H}-3 \alpha), 2.26(1 \mathrm{H}$, ddd, $J=12.8,6.8,3.2 \mathrm{~Hz}, \mathrm{H}-3 \beta), 3.78(1 \mathrm{H}$, br s, H5), $3.65(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 3.72(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}, \mathrm{H}-9 \beta), 7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.08$ (3H, s, H-13), 1.31 (3H, s, H-14), 1.57 (3H, s, H-15).

		-100000		$\stackrel{\text { a }}{\text { ¢ }}$	

S14. ${ }^{13} \mathrm{C}$-NMR spectrum of zederone (7) in CDCl_{3}
Zederone (7): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 131.2(\mathrm{C}-1), 24.6(\mathrm{C}-2), 37.9(\mathrm{C}-3), 64.0(\mathrm{C}-$ 4), 66.5 (C-5), 192.1 (C-6), 123.2 (C-7), 157.0 (C-8), 41.8 (C-9), 131.0 (C-10), 122.2 (C-11), 138.0 (C-12), 10.2 (C-13), 15.1 (C-14), 15.7 (C-15).

S15. ${ }^{1} \mathrm{H}$-NMR spectrum of curcumenone ($\mathbf{(}$) in CDCl_{3}
Curcumenone (8): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 0.41(1 \mathrm{H}, \mathrm{dt}, J=7.1,4.3 \mathrm{~Hz}, \mathrm{H}-1), 1.59$ $(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{H}-2), 2.44(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-3), 0.63(1 \mathrm{H}, \mathrm{q}, J=4.3 \mathrm{~Hz}, \mathrm{H}-5), 2.78$ ($2 \mathrm{H}, \mathrm{br}$ s, H-6), $2.48(1 \mathrm{H}, \mathrm{d}, 14.6 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 2.53(1 \mathrm{H}, \mathrm{d}, 14.6 \mathrm{~Hz}, \mathrm{H}-9 \beta), 2.06(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, 1.76 (3H, s, H-13), 2.10 (3H, s, H-14), 1.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$).

S16. ${ }^{13}$ C-NMR spectrum of curcumenone ($\mathbf{(}$) in CDCl_{3}
Curcumenone (8): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$), $\delta: 24.1$ (C-1), 23.4 (C-2), 43.9 (C-3), 208.7 (C-4), 24.1 (C-5), 28.0 (C-6), 128.0 (C-7), 201.6 (C-8), 48.9 (C-9), 20.1 (C-10), 147.3 (C-11), 23.4 (C-12), 23.4 (C-13), 30.0 (C-14), 19.0 (C-15).

S17. ${ }^{1} \mathrm{H}$-NMR spectrum of 13-hydroxygermacrone (9) in CDCl_{3}
13-Hydroxygermacrone (9): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 4.95(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-1)$, $2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \alpha), 2.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \beta), 2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 2.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \beta), 4.61(1 \mathrm{H}$, br d, $J=12.0 \mathrm{~Hz}, \mathrm{H}-5), 2.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.93(1 \mathrm{H}, \mathrm{brd}, J=11.8 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 3.40(1 \mathrm{H}$, br d, $J=11.8 \mathrm{~Hz}, \mathrm{H}-9 \beta), 1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 4.15(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{H}-13), 4.27(1 \mathrm{H}, \mathrm{d}, J=12.2$ $\mathrm{Hz}, \mathrm{H}-13), 1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15)$.

S18. ${ }^{13} \mathrm{C}$-NMR spectrum of 13-hydroxygermacrone (9) in CDCl_{3}
13-Hydroxygermacrone (9): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$), $\delta: 133.0(\mathrm{C}-1), 24.0(\mathrm{C}-2), 38.0$ (C-3), 135.7 (C-4), 124.9 (C-5), 28.5 (C-6), 131.3 (C-7), 207.1 (C-8), 55.5 (C-9), 126.3 (C10), 139.9 (C-11), 17.7 (C-12), 62.7 (C-13), 15.5 (C-14), 16.5 (C-15).

S19. ${ }^{1} \mathrm{H}$-NMR spectrum of zedoarondiol ($\mathbf{1 0)}$ in CDCl_{3}
Zedoarondiol (10): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.58-1.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 2), 1.58-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $1.34(1 \mathrm{H}, \mathrm{t}, J=11.4 \mathrm{~Hz}, \mathrm{H}-5), 1.95(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-6 \alpha)$, $2.77(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-6 \beta), 2.54(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 2.91(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}$, $\mathrm{H}-9 \beta$), 1.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 1.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 1.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 1.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$).

S20. ${ }^{13} \mathrm{C}$-NMR spectrum of zedoarondiol (10) in CDCl_{3}
Zedoarondiol (10): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 55.8(\mathrm{C}-1), 21.8(\mathrm{C}-2), 39.6(\mathrm{C}-3), 79.9$ (C-4), 51.8 (C-5), 28.4 (C-6), 134.6 (C-7), 203.0 (C-8), 59.7 (C-9), 72.6 (C-10), 142.1 (C-11), 22.8 (C-12), 22.1 (C-13), 22.5 (C-14), 20.5 (C-15).

S21. ${ }^{1} \mathrm{H}$-NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl_{3}
3-Hydroxy-5-platyphyllone (11): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 2.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 2.59$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}$), $1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}), 1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}), 3.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.45(2 \mathrm{H}, \mathrm{dd}, J=$ 4.7, 2.5 Hz, H-4), 2.64 ($2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-6$), $2.74(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-7), 6.95$ ($2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 6.68\left(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 6.67$ ($2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$).

S22. ${ }^{13} \mathrm{C}$-NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl_{3}
3-Hydroxy-5-platyphyllone (11): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 30.6$ (C-1), 38.1 (C-2), 66.9 (C-3), 49.2 (C-4), 211.7 (C-5), 45.2 (C-6), 28.6 (C-7), 132.9 (C-1'), 129.3 (C-2', $\left.6^{\prime}\right), 115.2$ (C-3', 5'), 154.3 (C-4'), 131.8 (C-1"), 129.2 (C-2", $6^{\prime \prime}$), 115.1 ($\left.\mathrm{C}-3^{\prime \prime}, 5^{\prime \prime}\right), 154.6$ (C-4").

S23. ${ }^{1}$ H-NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl_{3}
(3S)-1,7-bis(4-Hydroxyphenyl)-(6E)-6-hepten-3-ol (12): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 2.52$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}$), $2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 1.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.57(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$, 2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 5.96 ($1 \mathrm{H}, \mathrm{dt}, J=15.6,6.9 \mathrm{~Hz}, \mathrm{H}-6), 6.25(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-7), 6.97$ ($2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 6.68 ($2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}$), 7.12 ($2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$, $6^{\prime \prime}$), 6.70 ($2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$).

S24. ${ }^{13}$ C-NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl_{3} (3S)-1,7-bis(4-Hydroxyphenyl)-(6E)-6-hepten-3-ol (12): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 30.8$ (C-1), 38.8 (C-2), 70.6 (C-3), 36.7 (C-4), 29.0 (C-5), 127.4 (C-6), 129.7 (C-7), 133.2 (C-1'), 129.2 (C-2', 6^{\prime}), 115.3 ($\left.\mathrm{C}-3^{\prime}, 5^{\prime}\right), 154.3$ (C-4'), 129.7 (C-1"), 127.0 ($\left.\mathrm{C}-2^{\prime \prime}, 6^{\prime \prime}\right)$, 115.2 (C-3", $\left.5^{\prime \prime}\right), 155.5$ (C-4").

S25. ${ }^{1} \mathrm{H}$-NMR spectrum of centrolobol (13) in CDCl_{3}
Centrolobol (13): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 2.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 2.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b})$, $1.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.51(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 1.39(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5 \mathrm{~b}), 1.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.46$ ($2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-7$), 6.96 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$), $6.69\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.94\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, H-3", 5").

S26. ${ }^{13} \mathrm{C}$-NMR spectrum of centrolobol (13) in CDCl_{3}
Centrolobol (13): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta: 30.9(\mathrm{C}-1), 39.0(\mathrm{C}-2), 71.0(\mathrm{C}-3), 31.5$ (C-4), 24.9 (C-5), 37.0 (C-6), 34.8 (C-7), 133.6 (C-1'), 129.2 ($\left.\mathrm{C}-2^{\prime}, 6^{\prime}\right), 115.3$ ($\left.\mathrm{C}-3^{\prime}, 5^{\prime}\right)$, 154.2 (C-4'), 133.8 (C-1"), 129.2 ($\mathrm{C}-2^{\prime \prime}, 6^{\prime \prime}$), 115.1 ($\mathrm{C}-3^{\prime \prime}, 5^{\prime \prime}$), 154.3 ($\left.\mathrm{C}-4^{\prime \prime}\right)$.

S27. ${ }^{1}$ H-NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten3 -ol (14) in CDCl_{3}
(3S)-1-(3,4-Dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14): ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}), \delta: 2.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 1.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, $1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.94(1 \mathrm{H}, \mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, \mathrm{H}-6), 6.22(1 \mathrm{H}, \mathrm{d}, J=$ $15.7 \mathrm{~Hz}, \mathrm{H}-7), 6.46$ ($1 \mathrm{H}, \mathrm{br}$ s, H-2'), $6.64\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, H-6'), 7.09 ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$), 6.66 ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$).

S28. ${ }^{13} \mathrm{C}$-NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten3 -ol (14) in CDCl_{3}
(3S)-1-(3,4-Dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14): ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz), $\delta: 31.1$ (C-1), 38.9 (C-2), 70.3 (C-3), 36.9 (C-4), 29.9 (C-5), 127.3 (C-6), 129.6 (C-7), 134.1 (C-1'), 114.2 (C-2'), 144.2 (C-3'), 142.3 (C-4'), 115.3 (C-5'), 119.8 (C-6'), 129.3 (C-1"), 126.9 (C-2", $\left.6^{\prime \prime}\right), 115.2$ (C-3", $\left.5^{\prime \prime}\right), 155.6$ (C-4").

S29. $\Delta \delta=\left(\Delta \delta_{S}-\Delta \delta_{R}\right)$ values in ppm obtained from the MTPA esters of $\mathbf{1 1}$ in CDCl_{3}.

S30. $\Delta \delta=\left(\Delta \delta_{S}-\Delta \delta_{R}\right)$ values in ppm obtained from the MTPA esters of $\mathbf{1 2}$ in CDCl_{3}

[^0]: * Corresponding author: E- Mail: s_apichart@ru.ac.th; asuksamrarn@yahoo.com (A. Suksamrarn)

