Supporting Information

Rec. Nat. Prod. 8:1 (2014) 46-50

Cytotoxic Sesquiterpenoids and Diarylheptanoids from the Rhizomes of *Curcuma elata* Roxb.

Ratchanaporn Chokchaisiri^{1,2}, Prapapan Pimkaew³, Pawinee Piyachaturawat^{3,4}, Rattana Chalermglin⁵ and Apichart Suksamrarn^{1*}

¹Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

²Department of Chemistry, School of Science, University of Phayao, Maeka, Muang, Phayao 56000, Thailand

³Toxicology Graduate Program, and ⁴Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

⁵Department of Chemistry, Faculty of Science and Technology, Rajabhat Chandrakasem University, Bangkok 10900, Thailand

Page

Table of Contents

Extraction and Isolation of the Air-dried Rhizomes of Curcuma elata 2 Preparation of Mosher Esters of Compounds 11 and 12 4 **S1:** ¹H NMR spectrum of germacrone (1) in CDCl₃ 5 **S2:** ¹³C NMR spectrum of germacrone (**1**) in CDCl₃ 5 **S3:** ¹H NMR spectrum of curzerenone (**2**) in CDCl₃ 6 **S4:** ¹³C NMR spectrum of curzerenone (**2**) in CDCl₃ 6 **S5:** ¹H NMR spectrum of isofuranodienone (**3**) in CDCl₃ 7 **S6:** ¹³C NMR spectrum of isofuranodienone (**3**) in CDCl₃ 7 **S7:** ¹H NMR spectrum of furanodienone (**4**) in CDCl₃ 8 **S8:** ¹³C NMR spectrum of furanodienone (4) in CDCl₃ 8 **S9:** ¹H NMR spectrum of curdione (**5**) in CDCl₃ 9 **S10:** ¹³C NMR spectrum of curdione (**5**) in CDCl₃ 9

^{*} Corresponding author: E- Mail: s_apichart@ru.ac.th; asuksamrarn@yahoo.com (A. Suksamrarn)

Table of Contents Page **S11:** ¹H NMR spectrum of neocurdione (**6**) in CDCl₃ 10 **S12:** ¹³C NMR spectrum of neocurdione (6) in CDCl_{3...} 10 **S13:** ¹H NMR spectrum of zederone (7) in CDCl₃ 11 **S14:** ¹³C NMR spectrum of zederone (7) in CDCl₃ 11 **S15:** ¹H NMR spectrum of curcumenone (8) in CDCl₃ 12 **S16:** ¹³C NMR spectrum of curcumenone (8) in CDCl₃ 12 **S17:** ¹H NMR spectrum of 13-hydroxygermacrone (9) in CDCl₃ 13 **S18:** ¹³C NMR spectrum of 13-hydroxygermacrone (**9**) in CDCl₃ 13 **S19:** ¹H NMR spectrum of zedoarondiol (10) in CDCl₃ 14 **S20:** ¹³C NMR spectrum of zedoarondiol (10) in CDCl₃ 14 **S21:** ¹H NMR spectrum of 3-hydroxy-5-platyphyllone (**11**) in CDCl₃ 15 **S22:** ¹³C NMR spectrum of 3-hydroxy-5-platyphyllone (**11**) in CDCl₃ 15 S23: ¹H NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl₃ 16 S24: 13 C NMR spectrum of (3S)-1.7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl₃ 16 **S25:** ¹H NMR spectrum of centrolobol (**13**) in CDCl₃ 17 **S26:** ¹³C NMR spectrum of centrolobol (**13**) in CDCl₃ 17 **S27:** ¹H NMR spectrum of (3*S*)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6*E*)-6hepten-3-ol (14) in CDCl₃ 18 **S28:** ¹³C NMR spectrum of (3*S*)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6*E*)-6hepten-3-ol (14) in CDCl₃ 18 S29. $\Delta \delta = (\Delta \delta_s - \Delta \delta_R)$ values in ppm obtained from the MTPA esters of 11 in CDCl₃ 19 S30. $\Delta \delta = (\Delta \delta_s - \Delta \delta_R)$ values in ppm obtained from the MTPA esters of 12 in CDCl₃ 19

Extraction and Isolation of the Air-dried Rhizomes of Curcuma elata

The air-dried rhizomes of *C. elata* (8.5 kg) were milled and macerated successively with *n*-hexane and EtOH. The hexane and EtOH solutions were filtered and concentrated to dryness under reduced pressure at temperature 40-45 $^{\circ}$ C to give the hexane extract (brownish syrup, 129.7 g) and the EtOH extract (dark brownish sticky solid, 281.5 g).

Hexane Extract

The hexane extract (129.0 g) was fractionated by column chromatography (CC) (Merck silica gel 60, 0.063-0.200 mm, 250 g) eluting with *n*-hexane, *n*-hexane-EtOAc, and EtOAc with increasing amount of the more polar solvent. The eluates were examined by TLC and 8 groups of eluting fractions were obtained.

Group 3 (Fractions 5-17): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (1% EtOAc in *n*-hexane) to afford germacrone (**1**) as colorless prisms (575.9 mg), m.p. 49-50 $^{\circ}$ C (from MeOH) and curzerenone (**2**) as a colorless oil (475.6 mg).

Group 4 (Fractions 18-40): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (2% EtOAc in *n*-hexane) to afford 3 subfractions. Subfraction 1 (fractions 1-31) was separated on a Sephadex LH-20 eluting with MeOH and further purified by silica column chromatography eluting with 0.6% EtOAc in *n*-hexane to yield isofuranodienone (**3**) as a colorless oil (3.2 mg). Subfraction 3 (fractions 40-51) was subjected to repeated column chromatography eluting under isocratic condition (1% EtOAc in *n*-hexane) to give furanodienone (**4**) as a colorless oil (44.3 mg).

Group 5 (Fractions 41-57): These combined fractions were chromatographed over silica gel using 2% EtOAc in *n*-hexane as eluent, followed by column chromatography eluting under isocratic condition (1% EtOAc in *n*-hexane) to give curdione (**5**) as colorless prisms (129.9 mg), m.p. 55-56 °C (from EtOAc-*n*-hexane) and neocurdione (**6**) as a colorless prisms (385.8 mg), m.p. 41-42 °C (from EtOAc-*n*-hexane).

Group 7 (Fraction 60): This fraction was repeatedly recrystallized with EtOAc in *n*-hexane to afford zederone (**7**) as colorless needles (11.85 g), m.p. 153-154 $^{\circ}$ C (from EtOAc-*n*-hexane).

Group 8 (Fractions 61-62): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (5% EtOAc in *n*-hexane) to afford 6 subfractions. Subfraction 3 (fractions 5-6) was rechromatographed over silica gel eluting with CH_2Cl_2 to give curcumenone (**8**) as colorless oil (144.3 mg). Subfraction 5 (fractions 11-13) was subjected to two repeated column chromatography eluting under isocratic condition (15% EtOAc in *n*-hexane) to yield 13-hydroxygermacrone (**9**) as colorless oil (45.8 mg).

EtOH Extract

The EtOH extract (270.0 g) was fractionated by column chromatography (Merck silica gel 60, 0.063-0.200 mm, 520 g), using a gradient solvent system of *n*-hexane, *n*-hexane-EtOAc, EtOAc, EtOAc-MeOH and MeOH with increasing amounts of the more polar solvent. The eluates were examined by TLC and 3 combined fractions were obtained.

Group 2 (**Fractions 40-58**): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (0.5% MeOH in CH₂Cl₂) to afford 4 subfractions. Subfraction 2 (fractions 13-17) was separated on Sephadex LH-20 eluting with MeOH and further purified by column chromatography over silica gel RP-18 with 30% MeOH in H₂O as eluting solvent to give 3-hydroxy-5-platyphyllone (**11**) as colorless viscous oil (2.7 mg), (3S)-1,7-*bis*(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (**12**) as amorphous powder (20.2 mg), m.p. 112-113° (EtOAc-*n*-hexane) and centrolobol (**13**) as amorphous solid (7.5 mg). Subfraction 3 (fractions 18-23) was separated on Sephadex LH-20 eluting with MeOH, followed by column chromatography over silica gel RP-18 with 30% MeOH in H₂O to yield (3S)-1-(3,4-dihydroxyphenyl)-7-(4hydroxyphenyl)-(6E)-6-hepten-3-ol (**14**) as amorphous solid (2.1 mg).

Group 3 (Fractions 59-60): These combined fractions were chromatographed on a Sephadex LH-20 and eluted with MeOH and further purified by chromatography over silica gel

RP-18 with 30% MeOH in H₂O to give zedoarondiol (10) as colorless needles (7.5 mg), m.p. 123 $^{\circ}$ C (from EtOAc-*n*-hexane).

Preparation of the MTPA Ester of Compounds 11 and 12.

To a solution of the compound **11** (2.1 mg) in dry pyridine (100 μ L) was added (*R*)-(–)-MTPA chloride (15 μ L) at 10 °C and the mixture was stirred for 5 min. Stirring continued at ambient temperature and the completion of reaction was monitored by TLC. Two milliliters of *n*-hexane was added to the reaction mixture and the hexane-soluble part was subjected to flash column chromatography using *n*-hexane and 15% EtOAc/*n*-hexane as eluting solvent to give the (*S*)-MTPA ester **11x** (3.2 mg). The procedure was repeated, but using (*S*)-(+)-MTPA chloride in place of (*R*)-(–)-MTPA chloride, to yield the (*R*)-MTPA ester **11y** (3.5 mg). The ¹H NMR spectra of **11x** and **11y** were recorded in CDCl₃; the chemical shift differences of the proton resonances between the (*S*)-MTPA ester**11x** and the (*R*)-MTPA ester **11y** were calculated and the results are summarized in **S29**. Following the above procedure, the absolute configurations of esters **12x** and **12y** were determined, and the results are summarized in **S30**.

S1. ¹H-NMR spectrum of germacrone (1) in CDCl₃

Germacrone (1): ¹H-NMR (CDCl₃, 400 MHz), δ : 4.95 (1H, br d, J = 11.6 Hz, H-1), 2.05 (1H, m, H-2 α), 2.35 (1H, m, H-2 β), 2.06 (1H, m, H-3 α), 2.13 (1H, m, H-3 β), 4.68 (1H, br d, J = 9.0 Hz, H-5), 2.82 (1H, br d, J = 12.5 Hz, H-6 α), 2.91 (1H, br d, J = 12.5 Hz, H-6 β), 2.92 (1H, d, J = 10.0 Hz, H-9 α), 3.38 (1H, d, J = 10.0 Hz, H-9 β), 1.77 (3H, s, H-12), 1.69 (3H, s, H-13), 1.41 (3H, s, H-14), 1.60 (3H, s, H-15).

S2. ¹³C-NMR spectrum of germacrone (1) in $CDCl_3$

Germacrone (1): ¹³C-NMR (CDCl₃, 100 MHz), δ: 134.8 (C-1), 24.0 (C-2), 38.0 (C-3), 134.8 (C-4), 125.3 (C-5), 29.1 (C-6), 129.3 (C-7), 207.6 (C-8), 55.8 (C-9), 126.6 (C-10), 137.2 (C-11), 19.8 (C-12), 22.2 (C-13), 15.5 (C-14), 16.6 (C-15).

S3. ¹H-NMR spectrum of curzerenone (2) in CDCl₃

Curzerenone (**2**): ¹H-NMR (CDCl₃, 400 MHz), δ : 5.78 (1H, dd, J = 17.4, 13.0 Hz, H-1), 4.98 (2H, dd, J = 17.4, 4.3 Hz, H-2), 4.73 (1H, br s, H-3 α), 4.98 (1H, br s, H-3 β), 2.99 (1H, s, H-5), 2.76 (1H, d, J = 17.5 Hz, H-9 α), 2.88 (1H, d, J = 17.5 Hz, H-9 β), 7.06 (3H, br s, H-12), 2.15 (3H, s, H-13), 1.81 (3H, s, H-14), 1.16 (3H, s, H-15).

S4. ¹³C-NMR spectrum of curzerenone (2) in $CDCl_3$

Curzerenone (2): ¹³C-NMR (CDCl₃, 100 MHz), δ: 145.5 (C-1), 112.9 (C-2), 115.5 (C-3), 141.0 (C-4), 64.5 (C-5), 194.7 (C-6), 119.2 (C-7), 165.4 (C-8), 33.6 (C-9), 42.8 (C-10), 120.1 (C-11), 139.5 (C-12), 8.9 (C-13), 24.7 (C-14), 24.7 (C-15).

S5. ¹H-NMR spectrum of isofuranodienone (**3**) in CDCl₃

Isofuranodienone (**3**): ¹H-NMR (CDCl₃, 400 MHz), δ : 5.25 (1H, br t, J = 8.6 Hz, H-1), 1.78 (1H, m, H-2 α), 2.09 (1H, m, H-2 β), 2.20 (1H, m, H-3 α), 2.25 (1H, m, H-3 β), 5.84 (1H, br s, H-5), 3.03 (1H, d, J = 14.5 Hz, H-9 α), 3.57 (1H, d, J = 14.5 Hz, H-9 β), 7.05 (3H, br s, H-12), 2.16 (3H, br s, H-13), 1.73 (3H, s, H-14), 1.63 (3H, s, H-15).

S6.¹³C-NMR spectrum of isofuranodienone (**3**) in CDCl₃

Isofuranodienone (**3**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 123.9 (C-1), 26.1 (C-2), 36.3 (C-3), 141.1 (C-4), 129.0 (C-5), 193.8 (C-6), 123.9 (C-7), 161.5 (C-8), 32.8 (C-9), 134.0 (C-10), 122.1 (C-11), 138.4 (C-12), 9.5 (C-13), 22.6 (C-14), 19.1 (C-15).

S7. ¹H-NMR spectrum of furanodienone (4) in CDCl₃

Furanodienone (**4**): ¹H-NMR (CDCl₃, 400 MHz), δ : 5.15 (1H, dd, J = 11.4, 4.1 Hz, H-1), 2.16 (1H, td, J = 12.4, 3.5 Hz, H-2 α), 2.30 (1H, td, J = 12.4, 4.1 Hz, H-2 β), 1.85 (1H, td, J = 11.4, 4.1 Hz, H-3 α), 2.44 (1H, ddd, J = 11.4, 6.9, 3.4 Hz, H-3 β), 5.78 (1H, br s, H-5), 3.66 (1H, br d, J = 14.5 Hz, H-9 α), 3.70 (1H, br d, J = 14.5 Hz, H-9 β), 7.05 (3H, br s, H-12), 2.11 (3H, s, H-13), 1.97 (3H, s, H-14), 1.28 (3H, s, H-15).

S8. ¹³C-NMR spectrum of furanodienone (4) in CDCl₃

Furanodienone (**4**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 130.5 (C-1), 26.4 (C-2), 40.6 (C-3), 145.8 (C-4), 132.4 (C-5), 190.0 (C-6), 123.9 (C-7), 156.5 (C-8), 41.7 (C-9), 135.4 (C-10), 122.0 (C-11), 138.0 (C-12), 9.5 (C-13), 18.9 (C-14), 15.7 (C-15).

S9. ¹H-NMR spectrum of curdione (**5**) in CDCl₃

Curdione (5): ¹H-NMR (CDCl₃, 400 MHz), δ : 5.14 (1H, br s, H-1), 2.08-2.13 (2H, m, H-2), 1.56 (1H, m, H-3 α), 2.08-2.13 (1H, m, H-3 β), 2.30 (1H, br s, H-4), 2.37 (1H, dd, *J* = 16.4, 1.5 Hz, H-6 α), 2.65 (1H, m, H-6 β), 2.88 (1H, ddd, *J* = 16.4, 8.5, 7.8 Hz, H-7), 2.91 (1H, d, *J* = 10.7 Hz, H-9 α), 3.04 (1H, d, *J* = 10.7 Hz, H-9 β), 1.85 (1H, m, H-11), 0.85 (3H, d, *J* = 6.5 Hz, H-12), 0.92 (3H, d, *J* = 6.5 Hz, H-13), 0.95 (3H, d, *J* = 6.9 Hz, H-14), 1.62 (3H, s, H-15).

S10. ¹³C-NMR spectrum of curdione (5) in CDCl₃

Curdione (**5**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 131.5 (C-1), 26.3 (C-2), 34.0 (C-3), 46.7 (C-4), 214.6 (C-5), 44.2 (C-6), 53.5 (C-7), 211.1 (C-8), 55.8 (C-9), 129.2 (C-10), 29.9 (C-11), 21.1 (C-12), 19.8 (C-13), 18.5 (C-14), 16.5 (C-15).

S11. ¹H-NMR spectrum of neocurdione (6) in CDCl₃

Neocurdione (6): ¹H-NMR (CDCl₃, 400 MHz), δ : 5.11 (1H, br s, H-1), 2.02 (1H, m, H-2 α), 2.08 (1H, m, H-2 β), 1.70 (1H, m, H-3 α), 1.91 (1H, m, H-3 β), 2.45 (1H, br s, H-4), 2.36 (1H, dd, J = 14.8, 2.4 Hz, H-6 α), 2.66 (1H, dd, J = 14.8, 10.3 Hz, H-6 β), 2.83 (1H, ddd, J = 19.5, 10.9, 8.5 Hz, H-7), 2.82 (1H, br d, J = 11.4 Hz, H-9 α), 3.00 (1H, br d, J = 11.4 Hz, H-9 β), 1.81 (1H, m, H-11), 0.87 (3H, d, J = 6.6 Hz, H-12), 0.92 (3H, d, J = 6.6 Hz, H-13), 1.00 (3H, d, J = 7.1 Hz, H-14), 1.61 (3H, s, H-15).

S12. ¹³C-NMR spectrum of neocurdione (6) in CDCl₃

Neocurdione (**6**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 131.1 (C-1), 25.4 (C-2), 32.7 (C-3), 45.7 (C-4), 212.5 (C-5), 42.0 (C-6), 52.5 (C-7), 210.2 (C-8), 55.2 (C-9), 129.1 (C-10), 30.9 (C-11), 21.0 (C-12), 20.3 (C-13), 18.1 (C-14), 18.1 (C-15).

S13. ¹H-NMR spectrum of zederone (7) in CDCl₃

Zederone (7): ¹H-NMR (CDCl₃, 400 MHz), δ : 5.46 (1H, dd, J = 11.8, 3.6 Hz, H-1), 2.17 (1H, br d, J = 13.2 Hz, H-2 α), 2.48 (1H, J = dddd, 13.6, 13.2, 11.9, 3.2 Hz, H-2 β), 1.25 (1H, ddd, J = 12.8, 10.3, 3.8 Hz, H-3 α), 2.26 (1H, ddd, J = 12.8, 6.8, 3.2 Hz, H-3 β), 3.78 (1H, br s, H-5), 3.65 (1H, d, J = 16.4 Hz, H-9 α), 3.72 (1H, d, J = 16.4 Hz, H-9 β), 7.05 (1H, s, H-12), 2.08 (3H, s, H-13), 1.31 (3H, s, H-14), 1.57 (3H, s, H-15).

S14. ¹³C-NMR spectrum of zederone (7) in CDCl₃

Zederone (7): ¹³C-NMR (CDCl₃, 100 MHz), δ: 131.2 (C-1), 24.6 (C-2), 37.9 (C-3), 64.0 (C-4), 66.5 (C-5), 192.1 (C-6), 123.2 (C-7), 157.0 (C-8), 41.8 (C-9), 131.0 (C-10), 122.2 (C-11), 138.0 (C-12), 10.2 (C-13), 15.1 (C-14), 15.7 (C-15).

S15. ¹H-NMR spectrum of curcumenone (8) in CDCl₃

Curcumenone (8): ¹H-NMR (CDCl₃, 400 MHz), δ : 0.41 (1H, dt, J = 7.1, 4.3 Hz, H-1), 1.59 (2H, q, J = 7.1 Hz, H-2), 2.44 (2H, t, J = 7.1 Hz, H-3), 0.63 (1H, q, J = 4.3 Hz, H-5), 2.78 (2H, br s, H-6), 2.48 (1H, d, 14.6 Hz, H-9 α), 2.53 (1H, d, 14.6 Hz, H-9 β), 2.06 (1H, s, H-12), 1.76 (3H, s, H-13), 2.10 (3H, s, H-14), 1.09 (3H, s, H-15).

S16. ¹³C-NMR spectrum of curcumenone (8) in CDCl₃

Curcumenone (**8**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 24.1 (C-1), 23.4 (C-2), 43.9 (C-3), 208.7 (C-4), 24.1 (C-5), 28.0 (C-6), 128.0 (C-7), 201.6 (C-8), 48.9 (C-9), 20.1 (C-10), 147.3 (C-11), 23.4 (C-12), 23.4 (C-13), 30.0 (C-14), 19.0 (C-15).

S17. ¹H-NMR spectrum of 13-hydroxygermacrone (9) in CDCl₃

13-Hydroxygermacrone (**9**): ¹H-NMR (CDCl₃, 400 MHz), δ : 4.95 (1H, br d, J = 11.6 Hz, H-1), 2.04 (1H, m, H-2 α), 2.14 (1H, m, H-2 β), 2.05 (1H, m, H-3 α), 2.14 (1H, m, H-3 β), 4.61 (1H, br d, J = 12.0 Hz, H-5), 2.94 (2H, m, H-6), 2.93 (1H, br d, J = 11.8 Hz, H-9 α), 3.40 (1H, br d, J = 11.8 Hz, H-9 β), 1.78 (3H, s, H-12), 4.15 (1H, d, J = 12.2 Hz, H-13), 4.27 (1H, d, J = 12.2 Hz, H-13), 1.40 (3H, s, H-14), 1.60 (3H, s, H-15).

S18. ¹³C-NMR spectrum of 13-hydroxygermacrone (9) in CDCl₃

13-Hydroxygermacrone (**9**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 133.0 (C-1), 24.0 (C-2), 38.0 (C-3), 135.7 (C-4), 124.9 (C-5), 28.5 (C-6), 131.3 (C-7), 207.1 (C-8), 55.5 (C-9), 126.3 (C-10), 139.9 (C-11), 17.7 (C-12), 62.7 (C-13), 15.5 (C-14), 16.5 (C-15).

S19. ¹H-NMR spectrum of zedoarondiol (**10**) in CDCl₃

Zedoarondiol (**10**): ¹H-NMR (CDCl₃, 400 MHz), δ : 1.93 (1H, m, H-1), 1.58-1.75 (2H, m, H-2), 1.58-1.75 (2H, m, H-3), 1.34 (1H, t, *J* =11.4 Hz, H-5), 1.95 (1H, br d, *J* = 13.2 Hz, H-6 α), 2.77 (1H, d, *J* = 13.2 Hz, H-6 β), 2.54 (1H, d, *J* = 12.6 Hz, H-9 α), 2.91 (1H, d, *J* = 12.6 Hz, H-9 β), 1.89 (3H, s, H-12), 1.79 (3H, s, H-13), 1.16 (3H, s, H-14), 1.14 (3H, s, H-15).

S20. ¹³C-NMR spectrum of zedoarondiol (**10**) in CDCl₃

Zedoarondiol (**10**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 55.8 (C-1), 21.8 (C-2), 39.6 (C-3), 79.9 (C-4), 51.8 (C-5), 28.4 (C-6), 134.6 (C-7), 203.0 (C-8), 59.7 (C-9), 72.6 (C-10), 142.1 (C-11), 22.8 (C-12), 22.1 (C-13), 22.5 (C-14), 20.5 (C-15).

S21. ¹H-NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl₃

3-Hydroxy-5-platyphyllone (**11**): ¹H-NMR (CDCl₃, 400 MHz), δ : 2.52 (1H, m, H-1a), 2.59 (1H, m, H-1b), 1.56 (1H, m, H-2a), 1.67 (1H, m, H-2b), 3.93 (1H, m, H-3), 2.45 (2H, dd, J = 4.7, 2.5 Hz, H-4), 2.64 (2H, t, J = 7.1 Hz, H-6), 2.74 (2H, t, J = 7.1 Hz, H-7), 6.95 (2H, d, J = 8.1 Hz, H-2', 6'), 6.68 (2H, d, J = 8.1 Hz, H-3', 5'), 6.93 (2H, d, J = 8.1 Hz, H-2", 6"), 6.67 (2H, d, J = 8.1 Hz, H-3", 5").

S22. ¹³C-NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl₃

3-Hydroxy-5-platyphyllone (**11**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 30.6 (C-1), 38.1 (C-2), 66.9 (C-3), 49.2 (C-4), 211.7 (C-5), 45.2 (C-6), 28.6 (C-7), 132.9 (C-1'), 129.3 (C-2', 6'), 115.2 (C-3', 5'), 154.3 (C-4'), 131.8 (C-1''), 129.2 (C-2'', 6''), 115.1 (C-3'', 5''), 154.6 (C-4'').

S23. ¹H-NMR spectrum of (3S)-1,7-*bis*(4-hydroxyphenyl)-(6*E*)-6-hepten-3-ol (12) in CDCl₃

(3S)-1,7-bis(4-Hydroxyphenyl)-(6E)-6-hepten-3-ol (**12**): ¹H-NMR (CDCl₃, 400 MHz), δ : 2.52 (1H, m, H-1a), 2.65 (1H, m, H-1b), 1.69 (2H, m, H-2), 3.61 (1H, m, H-3), 1.57 (2H, m, H-4), 2.21 (2H, m, H-5), 5.96 (1H, dt, J = 15.6, 6.9 Hz, H-6), 6.25 (1H, d, J = 15.6 Hz, H-7), 6.97 (2H, d, J = 8.2 Hz, H-2′, 6′), 6.68 (2H, d, J = 8.2 Hz, H-3′, 5′), 7.12 (2H, d, J = 8.6 Hz, H-2″, 6″), 6.70 (2H, d, J = 8.6 Hz, H-3″, 5″).

S24. ¹³C-NMR spectrum of (3S)-1,7-*bis*(4-hydroxyphenyl)-(6*E*)-6-hepten-3-ol (12) in CDCl₃

(3S)-1,7-bis(4-Hydroxyphenyl)-(6E)-6-hepten-3-ol (**12**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 30.8 (C-1), 38.8 (C-2), 70.6 (C-3), 36.7 (C-4), 29.0 (C-5), 127.4 (C-6), 129.7 (C-7), 133.2 (C-1'), 129.2 (C-2', 6'), 115.3 (C-3', 5'), 154.3 (C-4'), 129.7 (C-1''), 127.0 (C-2'', 6''), 115.2 (C-3'', 5''), 155.5 (C-4'').

S25. ¹H-NMR spectrum of centrolobol (**13**) in CDCl₃

Centrolobol (**13**): ¹H-NMR (CDCl₃, 400 MHz), δ : 2.53 (1H, m, H-1a), 2.62 (1H, m, H-1b), 1.65 (2H, m, H-2), 3.52 (1H, m, H-3), 1.51 (2H, m, H-4), 1.23 (1H, m, H-5a), 1.39 (1H, m, H-5b), 1.42 (2H, m, H-6), 2.46 (2H, t, J = 7.5 Hz, H-7), 6.96 (2H, d, J = 8.5 Hz, H-2', 6'), 6.69 (2H, d, J = 8.5 Hz, H-3', 5'), 6.94 (2H, d, J = 8.6 Hz, H-2'', 6''), 6.68 (2H, d, J = 8.6 Hz, H-3'', 5'').

S26. ¹³C-NMR spectrum of centrolobol (**13**) in CDCl₃

Centrolobol (**13**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 30.9 (C-1), 39.0 (C-2), 71.0 (C-3), 31.5 (C-4), 24.9 (C-5), 37.0 (C-6), 34.8 (C-7), 133.6 (C-1'), 129.2 (C-2', 6'), 115.3 (C-3', 5'), 154.2 (C-4'), 133.8 (C-1''), 129.2 (C-2'', 6''), 115.1 (C-3'', 5''), 154.3 (C-4'').

S27. ¹H-NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (**14**) in CDCl₃

(3S)-1-(3,4-Dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (**14**): ¹H-NMR (CDCl₃, 400 MHz), δ : 2.46 (1H, m, H-1a), 2.54 (1H, m, H-1b), 1.64 (2H, m, H-2), 3.54 (1H, m, H-3), 1.50 (2H, m, H-4), 2.17 (2H, m, H-5), 5.94 (1H, dt, J = 15.7, 6.9 Hz, H-6), 6.22 (1H, d, J = 15.7 Hz, H-7), 6.46 (1H, br s, H-2'), 6.64 (1H, d, J = 8.0 Hz, H-5'), 6.22 (1H, d, J = 8.0 Hz, H-6'), 7.09 (2H, d, J = 8.3 Hz, H-2'', 6''), 6.66 (2H, d, J = 8.3 Hz, H-3'', 5'').

S28. ¹³C-NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14) in CDCl₃

(*3S*)-*1*-(*3*,*4*-*Dihydroxyphenyl*-7-(*4*-*hydroxyphenyl*)-(*6E*)-6-*hepten*-*3*-*ol* (**14**): ¹³C-NMR (CDCl₃, 100 MHz), δ: 31.1 (C-1), 38.9 (C-2), 70.3 (C-3), 36.9 (C-4), 29.9 (C-5), 127.3 (C-6), 129.6 (C-7), 134.1 (C-1'), 114.2 (C-2'), 144.2 (C-3'), 142.3 (C-4'), 115.3 (C-5'), 119.8 (C-6'), 129.3 (C-1''), 126.9 (C-2'', 6''), 115.2 (C-3'', 5''), 155.6 (C-4'').

S29. $\Delta \delta = (\Delta \delta_S - \Delta \delta_R)$ values in ppm obtained from the MTPA esters of **11** in CDCl₃.

S30. $\Delta \delta = (\Delta \delta_S - \Delta \delta_R)$ values in ppm obtained from the MTPA esters of **12** in CDCl₃